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Abstract

Protein function is a concept that can have different interpretations in different biological contexts, and the
number and diversity of novel proteins identified by large-scale “omics” technologies poses increasingly
new challenges. In this review we explore current strategies used to predict protein function focused on
high-throughput sequence analysis, as for example, inference based on sequence similarity, sequence
composition, structure, and protein–protein interaction. Various prediction strategies are discussed
together with illustrative workflows highlighting the use of some benchmark tools and knowledge bases
in the field.
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1 Introduction

With the advent of structural, functional, and comparative geno-
mics, numerous sequences of predicted proteins have been pro-
duced in a velocity that cannot be followed by its experimental
studies, and the only feasible way to annotate tentative functions
to these proteins is by means of automatic sequence analysis [1].
Beyond sequence, structural genomic projects have also allowed
the determination of protein structure in a high-throughput fash-
ion [2]. On the other hand, although these methodologies con-
tribute to our knowledge, over one-third of structures are of
proteins of unknown function and their worth can only be signifi-
cantly enhanced by knowing the biological roles that they play [2],
but experimental characterization of function cannot scale up to
accommodate the vast amount of sequence [3] and structural data
already available and the growing gap between sequences and
experimentally annotated proteins can only be accomplished by
combining experimental and computational methods for func-
tional annotation [4]. Further, experimental efforts have been
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done to determine protein function and provide a more detailed
understanding mainly of model organisms, expecting that accurate
annotation may be transferred to other species by computational
methods [4]. Numerous approaches have been used to automati-
cally predict protein function so far, from different data types, such
as sequence information, protein structure, phylogenetics and evo-
lutionary relationships, interaction and association data, and a
combination of these [5].

The accurate annotation of protein function is a key to under-
standing life at the molecular level and has great biomedical and
pharmaceutical implications [3, 4]. In the absence of experimental
data, the function of a protein can be inferred on the basis of its
sequence similarity, sequence composition, structure [3], gene
expression, protein–protein interaction, phylogeny, genomic con-
text, or other structural or functional information based on our
knowledge about proteins with already known functions. Even in
the presence of some experimental evidences, automatic analysis is
important to integrate data and evidences for function, because
experimental characterization of a protein such as structural data,
analysis of gene expression, and delineation of a protein interaction
network rarely gives direct clues to gene function [6]. The computa-
tional annotation of protein function has therefore emerged as a
problem at the forefront of computational and molecular biology
[3]. However, prediction of function from sequence is a considerably
more complex enterprise than a simple sequence database search [7].

1.1 Homology Similar genes often have conserved functions in different organ-
isms. This happens because organisms share a common evolution-
ary history, preserving functions from a common ancestor and
changing it along time of evolution. These shared functions or
characteristics linked by a common ancestor is called homology
and cannot be quantified. Functions or characteristics “are” or
“are not” homologous. However, ancestral organisms or states
are not present today and the way to infer homology is by means
of quantification of similarity. For nucleotide and amino acid
sequences, the way to measure similarity is by means of a sequence
alignment. Different types of homologies may be distinguished and
the main ones are (Fig. 1a): orthologs, arisen by an speciation
evolutionary event, and paralogs, arisen by a gene duplication
evolutionary event. Time of evolution may modify nucleotide or
protein sequences and lengths, but it is also important to consider
the evolution of proteins in another perspective. Many proteins are
structured in a domain manner, meaning that these proteins are
composed by a set of independent functional units and each of
these domains may have a different evolutionary history.

Themore the organisms evolve, themore the sequences diverge
and the more difficult is it to establish similarity and infer homology
from similarity and sequence alignments. This relationship can also
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be used for protein function prediction, where the higher the
sequence similarity, the better the chance that homologous proteins
in fact share functional features [8]. For that purpose, the following
rule may be useful [9]: (a) 90% of protein sequences sharing 30%, or
more, identity are structurally similar, suggesting high probability of
homology and also function; (b) only 10% of protein sequences
sharing 25%, or less, sequence identity are structurally similar, sug-
gesting a low probability to find homology and function.

Directly or indirectly, the prediction of a protein function in
silico passes through the identification of homologous and the
measurement of similarity that, at the end, will allow homology
identification. On the contrary, displacement of non-homologous
but functionally equivalent enzymes [7] is also observed.

1.2 Definition of

Protein Function

Protein function is a concept that can have different interpretations
in different biological contexts and/or level [8, 10–12], describing
biochemical, cellular, and phenotypic aspects of the molecular
events that involve the protein [3, 4]. The protein function can
be divided into three major categories: (a) molecular function, e.g.,
the specific reaction catalyzed by an enzyme; (b) biological process,
e.g., the metabolic pathway the enzyme is involved in; and (c)
system or physiological level, e.g., if the enzyme is involved in
respiration, photosynthesis, cell signaling, etc. One could also

Fig. 1 Sequence similarity and homology in protein function prediction. Flowcharts summarizing (a) basic
concepts on homology and sequence divergence and (b) possible strategies in protein annotation using
sequence similarity
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consider a fourth level of cellular component, specifying the
compartment of the cell the protein plays its role, e.g., cell mem-
brane, any organelles [8, 11–13]. Protein function may also vary in
space and time [11], as we will see, for example, in the case of
moonlighting proteins. Computational methods exist to predict all
of these aspects of function [13]. Furthermore, most biological
processes are carried out by groups of interacting proteins and
these interactions can be predicted in silico [13]. These many levels
of protein function, from a very specific biochemical activity to a
biological processes and pathways context, and from the cell to the
organism level [2] generate practical consequences with protein
annotation including vague terms to describe its function, such
as “like protein,” “containing domain protein,” and “signaling
protein” [2].

When attempting to identify the molecular function of a pro-
tein, it is important to bear in mind the simple rule:
sequence ! structure ! function, that is, sequence determines
the structure and structure determines the molecular function.

When describing function, attention must be paid to two kinds
of proteins: those containing multiple domains and the so calling
moonlighting proteins. The former are proteins composed of many
domains, each domain contributing with a different specialized
function to compose a unique biological function of the protein.
Variation in the domain composition may occur, given different
functions to similar proteins within the same family. The last are
proteins that perform more than one function (multitask protein).
For a moonlighting protein, usually independent unrelated func-
tions are observed [14], not including function variation that results
from gene fusions, homologous but nonidentical proteins, proteins
resulting from alternative splicing, variation in posttranslational
modifications and proteins operating in different locations or are
able to utilize different substrates but have a single function [15].

It is now recognized that multifunctional proteins are common
[4]. At least 34% of functionally characterized proteins (by experi-
mental studies) are already assigned more than one distinct molec-
ular function term and that at least 56% of proteins participate in
more than one distinct biological process [4].

Different function of moonlighting proteins occur due to [15]:
(a) cellular localization (within the cell or if inside/outside the cell);
(b) the cell types expressing the protein; (c) the substrate, product,
or a cofactor bound to the protein or different binding sites for
different ligands; (d) the number of subunits joined and variation in
the complexes to form the quaternary structure of a protein. These
mechanisms that a protein can moonlight demonstrate the function
may shift at different levels (i.e., molecular function, cellular pro-
cess, or localization). The MoonProt database actually lists approx-
imately 300 experimentally identifiedmoonlighting proteins (www.
moonlightingproteins.org).
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If the moonlighting functions of a protein may also be assigned
to an unknown protein by means of homology-based transfer is a
matter of discussion. Identification of additional function of moon-
light proteins is relatively recent and difficult by experimentation
and its identification by in silico analysis is an even greater challenge
[14]. Few methods are actually available to predict moonlighting
proteins. Khan et al. [14] searched GO for known moonlighting
proteins and observed that clusters of these proteins reflect their
functions. Further analysis of protein–protein interaction, gene
expression, phylogenetic profile, and genetic interaction network
revealed that moonlighting proteins physically interact with a
higher number of distinct functional classes of proteins than non-
moonlighting proteins and that moonlighting proteins tend to
interact with other moonlighting proteins. It has also been sug-
gested that moonlighting proteins are under positive selection [14,
15]. These observations open the door for in silico prediction of
moonlighting functions.

1.3 Proteins

of Unknown Function

A large portion of known proteins are poorly characterized
experimentally, with very little knowledge about their function
[8]. The vast majority of proteins with function experimentally
verified is observed in model organisms [4], but even for those
organisms, a significant part of all proteins coded in their genomes
are to be characterized. In Escherichia coli K-12, about one-third
(1408) of the 4225 predicted proteins remain functionally unan-
notated (orphans) and only half of the predicted proteins
have indicative of function based on experimental evidence and
the same proportion seems to apply to Saccharomyces cerevisiae
[6, 16]. Further, the remaining genes between experimentally
annotated and unannotated in E. coli have either only generic
functional attributes [16].

In Swiss-Prot v15.15, a curated database, approximately 90% of
annotated proteins in Molecular Function and Biological Process
ontologies belong to nine model organisms only (H. sapiens, S.
cerevisiae, M. musculus, R. norvegicus, A. thaliana, D. melanoga-
ster, S. pombe, E. coli K-12, and C. elegans) [4]. However, nearly
60% of the proteins from these model organisms still do not have
any experimentally determined Molecular Function or Biological
Process terms [4].

In CharProtDB (www.jcvi.org/charprotdb) [17], a database of
experimentally characterized proteins, updated dataset till 2011
indicate that the main organisms with experimentally characterized
proteins are as follow: Escherichia coli with 2631 proteins (~60% of
all proteins), Schizosaccharomyces pombewith 1817 proteins (~35%),
Candida albicans with 1308 proteins (~9%), and Bacillus subtillis
with 1250 proteins (~30%). A total of 1252 species of all domain of
life are included in the database and 96% of them have less than 100
experimentally characterized proteins.
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Although these information about experimentally characterized
proteins is difficult to obtain and is presented from different source
and time, taken together, they give us an overview of our current
knowledge about the function of proteins in different organisms
and our need for tools that allow of automatic and reliable predic-
tion of protein function.

In Pfam (pfam.xfam.org) [18] release 26.0, a database dedi-
cated to protein families and its domains, more than 20% of all
proteins are annotated as containing DUFs (Domains of Unknown
Function) [19]. A total of 355 essential proteins in 16 model
bacterial species contain 238 DUFs, most of which represent
single-domain proteins, clearly establishing the biological essential-
ity of DUFs [19]. About 9% of DUFs spanned all domains of life,
nearly half (43%) had been detected only in bacteria, 19% were only
found in eukaryotes, and 3% are restricted to Archaea [20].

For the updated version of COG (Clusters of Orthologous
Groups; www.ncbi.nlm.nih.gov/COG) [1], a database of putative
orthologous proteins shared from completely sequenced genomes
of bacteria and archaea, among a total of 4631 COGs distributed in
26 functional categories, R “General function prediction only”
(507 COGs) and S “Function unknown” (959 COGs) are the
most abundant categories, both counting for 31.6% of all COGs.
Further, all COGs include about 60% and 86% of bacterial and
archaeal proteomes, respectively [1], with remaining proteins not
even being assigned to any existing COG. The fraction of the total
proteome with specific functional annotation (excluding R and S
categories) varies from a minimum of about 51–53% to a maximum
of 72–76% at the phyla level [1].

The large number of functionally unannotated genes is
observed because experimental characterization is time consuming,
so these genes have never been studied experimentally or experi-
mental studies brought contradictory results that could not be
easily reconciled [6].

2 Strategies for Protein Function Prediction

Normally, the prediction of a protein function starts by trying to
define its molecular function, using a homology-based transfer
strategy, e.g., a similarity search against a database of known pro-
teins or a search against a protein family and domain database. In a
next step, one tries to extend the molecular function to a system
function, that is, define the role played by a protein in a biological
process.

Computational biology offers tools that can provide insight
into the function of proteins based on their sequence, their struc-
ture, their evolutionary history, and their association with other
proteins [8]. There are also methods that directly analyze the
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sequence or structure in order to predict the function or methods
that rely on sources of information that are beyond the protein
itself, such as genomic context, protein–protein interaction net-
works, or membership in biochemical pathways [8].

Prediction of protein function, unlike establishing homology, is
not a “yes” or “no” decision (i.e., an unknown protein will or will
not have exactly the same function than a homologous counter-
part). Function may be shared at different levels. The obvious
example is two proteins that participate in the same cellular process
but have different enzymatic activities (i.e., share the same cellular
process function but have different molecular functions). Further,
if two proteins are homologous, it means that they share a common
evolutionary origin, but it does not guarantee that these two pro-
teins will have the same function [8]. On the other hand,
concerning about different kinds of homology, in general, func-
tions from ancestral origin tend to be conserved more in orthologs
than in paralogs [8, 21], but frequently distinguishing between
them is not a straightforward task and even orthologs may diverge
functionally [8, 21]. In the opposite way, proteins with same func-
tion may arise not by means of homology, but by convergent
evolution, when by means of adaptive change, some molecular
“functionality” arises independently in proteins not sharing an
ancestral sequence [22, 23]. All these possibilities are presented in
Fig. 1b, showing how homology, similarity, and function correlate.

Function predicted automatically and on a large scale includes
additional problems concerning the need to standardize and quan-
titatively assess the similarity of functions between proteins [8]. A
large number of methods have been proposed to predict protein
function using information from amino acid sequence and pre-
dicted physicochemical properties, phylogenetic profiles and geno-
mic context, protein–protein interaction networks, protein
structure data, microarrays and clustering patterns of coregulated
genes, predicted ligands, or a combination of data types [3, 4, 24].

The primary databases of biological sequences and structures
are the main sources of information for any methods attempting to
predict protein function. These databases can be directly searched
to looking for similar sequences or structures and infer homology
to transfer functional annotation or can be used to build secondary
databases of clusters of protein sequences (e.g., COG,UniProtKB/
UniRef, NCBI Protein Clusters, Panther), family and domains
(e.g., Pfam, PROSITE, SMART, PRINTS, CDD), protein domain
classification from structures and sequences (e.g., CATH,
Gene3D), or retrieve well-known and annotated sequences/struc-
tures experimentally characterized to build probabilistic models or
models based on machine learning that may be applied to scan
unknown proteins to give insight in its function (e.g., TMHMM,
LocTree3, BaCelLo, TargetP, PSORT, Protein prowler, LipoP,
TatP). In this sense, all knowledge applied to automatically predict
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the function of a protein from its sequence and/or structure is
founded on the concept of homology and in the known proteins
and annotation deposited in the databases, that is, the automatic
prediction will use these information directly or indirectly. An
example showing the steps of some of these databases may be
built is presented in Fig. 2a, starting from DNA sequencing, gen-
erally producing complete genome sequences, to the knowledge

Fig. 2 Protein annotation strategies using knowledge bases. Flowcharts exemplifying (a) knowledge base
construction and (b) the annotation process of a protein sequence, a proteome and a metagenome using
homology-searching strategies. (c) The combination of different resources can be used for knowledge
discovery in databases in order to help the annotation process (see Fig. 3 for additional details)
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database, passing through identification of orthologs, clustering
sequences in gene families, and automatic and manual annotations.
This knowledge is then used to predict function from single pro-
teins, complete proteomes or even metaproteomes (Fig. 2b) using
many available bioinformatic tools applying different methodolo-
gies (Fig. 2c) as outlined below and detailed in Fig. 3, including
commonly used tools with a simplified workflow of analysis.

2.1 Sequence-Based

Methods

2.1.1 Sequence

Similarity/Homology-Based

Transfer

Currently, the simplest andmost usedmethod to determine protein
function is based on similarity search. This is accomplished by
means of similarity search programs, with BLAST (blast.ncbi.nlm.
nih.gov) [25] being the most widely used form of computational
function prediction methods, assigning unannotated proteins with
the function of their annotated inferred homologs [10]. However,
this analysis is directly dependent on databases and the annotation
observed for the retrieved sequences. For that reason, when trans-
ferring function from homology inference, it is important to con-
sider that databases contain errors, caused mainly by automatic
propagation of annotation errors transferred by homology [8]
and this method is, perhaps, the most sensitive to these errors.
Further, the resulted database sequences, although significantly
similar to query sequence, may not represent a true homolog, or
may represent a paralog, instead of an ortholog, or, further, even if
an ortholog was retrieved, could not present the same function
(Fig. 1b). Certainly, the expansion of databases of biological
sequences brought another level of problem for functional assign-
ment. Currently, most database sequences resulting from a similar-
ity search are hypothetical proteins with unknown function, making
the analysis unfruitful and frustrating or hiding more distant-
related sequences containing reliable annotation. In general, the
inference of function is reliable only for very high levels of sequence
identity (roughly more than 60%) [26]. An alternative to BLAST
analysis is the HMMER web server (www.ebi.ac.uk/Tools/
hmmer) [18] that implements protein sequence databases searches
through alignments using HMM. It claims to return more correct
distantly related proteins than BLAST, but HMMER search is
limited to amino acid level.

Sequence similarity does not directly reflect phylogeny and may
misrepresent the evolutionary structure of a phylogenetic tree [27].
As homology is an evolutionary concept, methods to infer protein
function that use sequence similarity search tools (e.g., BLAST)
against sequence databases should not be viewed as “homology-
based,” but are, instead, “similarity-based.” On the other hand, the
real “homology-based” methods are those exploiting phylogenetic
information.

2.1.2 Protein Families

and Domain Search

Domain search also include sequence similarity, but focuses on
conserved motifs found in protein families. It takes into account
the modular nature of the proteins and is putative more sensitive
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because it considers only conserved regions, allowing detection of
more distantly related proteins. The way used to establish motifs/
domains in a protein family varies among different sources, but all
start from multiple sequence alignments (MSA) of related (homol-
ogous) protein sequences in a given family. The conservation/
variation in amino acids composition for each position in conserved
functional regions (motifs/domains) are then extracted. The use of
motifs/domains is tightly connected to protein families and can be
extracted from MSA as separate single motifs/domains, multiple
motifs/domains or even for the whole MSA. Conserved regions in
motifs/domains are observed in MSA and described as: (a) pat-
terns, a qualitative description of a motif/domain, indicating the
occurrence of amino acids for each position of a motif/domain,
represented through a regular expressions, as in the PROSITE
database (prosite.expasy.org) [28]; (b) profiles, a quantitative
description of a motif/domain, scoring the occurrence of each
amino acid in MSA, as in Position-Specific Scoring Matrix
(PSSM) used in the NCBI Conserved Domain Database (CDD)
(www.ncbi.nlm.nih.gov/cdd) [29], or generating a probabilistic
model using Hidden Markov Model (HMM) as in the Protein
Family (Pfam) database (pfam.xfam.org) [18]; (c) fingerprints,
groups of conserved and interrelated motifs capable to provide a
signature for a particular protein family, as in the PRINTS database
(www.bioinf.man.ac.uk/dbbrowser/PRINTS) [30]. These
resources may be used in complementary to similarity search data-
base analysis.

2.2 Structure-Based

Methods

The function of a protein is inherently linked to its structure [31]
and proteins sharing similar functions often have similar folds, a
result originated from a common ancestral protein [2], the same
homology concept used when comparing amino acid or nucleotide
sequences. Sometimes, however, the function of one or both
homologous proteins may change in the course of evolution while
their folds remain largely unchanged, so in these cases the same fold
may give rise to two functions [2, 26].

Methods to predict function from structure can be viewed
according to the level of protein structure and specificity at which
they operate, and be roughly separated in global fold similarity
search and local structure definition or active site characterization
[2, 31]. It should be noted, however, that not always global fold
similarity correlates with functional similarity; examples include the
TIM barrel fold, ferredoxin fold, and Rossmann fold global folds
that are known to perform varying functions [31]. Functional
assignment in these cases can be confirmed by local conservation
of the residues [31]. The function of certain types of proteins is
affected by a small number of residues found in a localized region of
the three-dimensional structure. In enzymes, for example, the
enzyme’s catalytic function will be performed by a small number
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of catalytic residues located in the active site [2]. Often, the specific
arrangement and conformation of the residues are crucial to the
performance of the function and remain strongly conserved over
evolutionary time, even as the remainder of the protein’s sequence
and structure undergoes major changes [2]. Although global fold
similarity can be used in many cases to assign a degree of functional
similarity, predictions of specific biochemical or enzymatic function
can be more accurately obtained from local fold similarity, i.e., in
and around the protein active site [31].

Below the level of the fold come various other aspects of a
protein’s three-dimensional structure that may be associated with
specific functions [2]. The surface of the protein, particularly its
clefts and pockets, can hold important clues to function [2].

Many bioinformatics tools are available for structural function
prediction. A hierarchical classification, including clusterization in
homologous families, based on protein structures available in the
Protein Data Bank (PDB) is presented by Class, Architecture,
Topology and Homology (CATH) system (www.cathdb.info)
[32] and Gene3D (gene3d.biochem.ucl.ac.uk) that uses informa-
tion in CATH to predict the locations of structural domains on
protein sequences from databases such as UniProtKB [33, 34].
Other methods exist for fold searching, including DALI (ekhidna.
biocenter.helsinki.fi/dali_server) [35] and VAST (structure.ncbi.
nlm.nih.gov/Structure/VAST) [36], which uses vector alignment
of secondary structures, and CE (source.rcsb.org/jfatcatserver/
ceHome.jsp) [37].

2.3 De Novo Protein

Function Prediction

If an unknown protein has no significant similarity to any known
protein, how is it possible to get insights about its function? In this
case, computational approaches can be used to predict protein
function de novo, that is, using only sequence or structure infor-
mation to infer properties that are common to proteins of the same
function [8]. These methods take the assumption that proteins of
the same function are similarly adapted to same conditions (sub-
mitted to the same evolutionary constraints), such as pH, proper-
ties of a ligand, structural flexibility, etc. which will be reflected in
their sequence and structural features [8]. Although not directly,
these methods are also dependent on databases and proteins with
already known function. This occurs because de novo methods
generally use algorithms based on supervised learning models or
statistical models, including Support Vector Machines (SVM), arti-
ficial neural networks, and Hiden Markov Model (HMM). These
methods are usually less accurate than annotation transfer but are
able to capture significant correlations between features and func-
tions [8]. To do that, it needs to be “trained,” that is, before
scanning an amino acid sequence the models must be built from
previously known proteins with the desired function or cellular
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localization. These methods are largely used to establish functional
residues or the subcellular localization of proteins [8].

Methods to predict functional residues assume that residues
that have a similar function in different proteins are likely to possess
similar physicochemical characteristics [8]. For example, residues
that bind DNA share common structural and physicochemical
features in most DNA-binding proteins (e.g., secondary structures,
geometries, solvent accessibility, charge, hydrophobicity) [8].
There are several methods for the prediction of DNA- or metal-
binding residues from sequence or structure [8].

Determining the subcellular localization of a protein helps to
establish its function and can be very relevant for its experimental
characterization [8]. Subcellular localization can also be predicted
from similarity and motif searches if similar protein sequences with
known function are available in databases, but de novo methods,
instead, exploit the known correlation between amino acid compo-
sition and localization [8] and may help to even improve the
knowledge about known proteins.

Many useful bioinformatics tools are available for online analy-
sis; examples are: the Protein Subcellular Localization Prediction
System (LocTree3; www.rostlab.org/services/loctree3) [38] that
classifies proteins from eukaryotes, bacteria, and archaea; Balanced
Subcellular Localization Predictor (BaCelLo; gpcr2.biocomp.
unibo.it/bacello) [39], a predictor for the subcellular localization
of proteins in eukaryotes; TargetP (www.cbs.dtu.dk/services/
TargetP) [40], a predictor for eukaryotic proteins based on the
presence of N-terminal signal peptide for chloroplast, mitochon-
drial, or secretory pathway; Subcellular Localisation Predictor (Pro-
tein Prowler; pprowler.imb.uq.edu.au) [41] determines the
localization of the protein in secretory pathway, mitochondrion,
or chloroplast; TMHMM (www.cbs.dtu.dk/services/TMHMM)
[42] predicts transmembrane helices in protein sequences; LipoP
(www.cbs.dtu.dk/services/LipoP) [43] predicts lipoproteins and
signal peptides from Gram-negative bacteria protein sequences;
TatP (www.cbs.dtu.dk/services/TatP) [44] predicts the presence
and location of Twin-arginine signal peptide cleavage sites in
bacteria.

2.4 Standard

Vocabulary

Standard vocabulary on protein functional annotation provides
important information to support researches on functional geno-
mics, molecular and computational biology [4]. Schemes such as
the enzyme classification system, or Enzyme Commission (EC),
based on enzymatic reactions (www.chem.qmul.ac.uk/iubmb/
enzyme) [45] that has been widely used in protein knowledge
resources. Similarly, the Gene Ontology (GO) Consortium consists
of standardized ontologies for describing gene function (www.
geneontology.org) [46]. An ontology is a formal representation
of knowledge by means of defined terms and its interrelationships,

Protein Function Prediction 67

leonardo@ufpr.br



allowing sequence annotation to different levels depending on the
available information [46]. Both EC and GO are examples of
frameworks that assign functions to groups of genes and gene
products [47], creating controlled vocabulary and promoting data-
base interoperability, but no system is directly based on protein
sequences. More recently, a classification system was created for
membrane transport proteins, named Transport Commission
(TC), in analogy to EC system, based on the type of transport
but in contrast to EC, also considers phylogenetic information
based on families of homologous proteins involved (www.chem.
qmul.ac.uk/iubmb/mtp) [48]. A number of other resources
benefit from such controlled vocabulary, for example, the DAVID
database (david.ncifcrf.gov) [49], which allows exploring functional
annotation for large list of genes. EC, GO, and, more recently, TC
numbers have been assigned to individual protein sequences in
protein sequence databases such as UniProtKB, NCBI protein,
and others. There are tools that combine standard vocabulary with
similarity-based methods in predicting function from protein
sequences, associating GO terms from similar proteins found in
database, such as Gotcha [50] and PFP (kiharalab.org/web/pfp.
php) [51], or combining differentmethods, including similarity and
domain search, SVM and sequence derived protein features, such as
CombFunc (www.sbg.bio.ic.ac.uk/~mwass/combfunc) [52] and
ProtFun (www.cbs.dtu.dk/services/ProtFun) [53].

Different and complementary approaches have been applied for
functional classification of proteins (and their genes) in large data-
bases, mainly from predicted proteomes from complete genome
sequences of all domains of life. These systems use bioinformatic
algorithms and pipelines to generate clusters or families of protein
sequences, assumed to be homologous, and classify them function-
ally. It is very useful in high-throughput analysis for functional
classifications based on similarity search methods. Examples of
those systems are The Clusters of Orthologous Groups (COG;
www.ncbi.nlm.nih.gov/COG) [1], Evolutionary Genealogy of
Genes: Non-supervised Orthologous Groups (EggNOG;
eggnogdb.embl.de) [54], Protein ANalysis THrough Evolutionary
Relationships (PANTHER) Classification System (www.pantherdb.
org) [55]. Other, special systems exist, dedicated to the classifica-
tion of a more restricted group of function, for example,
Carbohydrate-Active Enzymes (CAZy) database, dedicated to the
families of enzymes that catalyze reactions (that degrade, modify, or
create) glycosidic bonds (www.cazy.org) [56].

2.5 Systems

Information

2.5.1 Genomic Context

In all organisms, the gene constitute a fundamental unit and its
coded proteins tend to associate into higher levels of macromolec-
ular complexes, biochemical pathways, and functional modules
that are groups of interacting proteins acting together to
accomplish a cellular process [16]. Now it is well recognized the
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“modular nature” of cellular systems and this concept is considered
a fundamental aspect of biological organization. Functional mod-
ules can be seen as a group of molecules acting in conjunction and
interacting between them in order to perform a cellular/physiolog-
ical function, with weaker connections to other functional modules
[57, 58]. Frequently, functional modules show a high degree of
conservation across species and may be identified in genomic asso-
ciations (also linked to functional associations), such as conserva-
tion of gene order, gene/domain fusion events, and similarity of
their phylogenetic profile [31, 59]. For example, the gene order is
conserved in genes coding for enzymes or proteins involved in a
particular metabolic pathways or cellular process, generally clus-
tered in operons, and may serve as important clues for assigning
functions if two genes retain close proximity even across large
phylogenetic distances, indicating the presence of selective forces
maintaining the gene organization [31]. Domain fusion is also
another evolutionary event indicating functional associations in
proteins, occurring when two functions are exerted by two inde-
pendent proteins in one organism, but in a single protein, contain-
ing two domains in another one [31].

As an extension of genome context methods, a third indicative
of functional association is the co-occurrence of genes, that is, the
presence or absence of genes, known as phylogenetic profile,
observed in genomes across different taxonomic groups [60]. The
phylogenetic profile may be used to predict protein function by
correlating the phylogenetic distribution of a query gene with that
of known genes [31, 60]. The use of evolutionary information in
the prediction of gene function is frequently referred as phyloge-
nomics [61] and more elaborated methods infer function by build-
ing phylogenetic trees from homologs from known and unknown
genes, generally presenting different functions assumed to rise from
duplication events; the uncharacterized functions are then pre-
dicted by the phylogenetic positions relative to characterized
genes [61]. Methods implemented in Orthostrapper and Function
Through Evolutionary Relationships (SIFTER; sifter.berkeley.edu)
[5] belong to this category.

This functional association may also be predicted via
co-expression pattern in microarray analyses and/or mining litera-
ture [31]. Genome context can also be integrated with other levels
of protein function information, as for example, standard vocabu-
lary and network-based predictions. Some bioinformatics tools
provide means to integrate all these levels of information, as for
example, the KEGG pathway database [62] of metabolic pathway
predicted from complete genome sequences, or the STRING data-
base [63] of protein–protein interactions from different sources
(including physical and functional evidences for association) and
neighborhood, co-occurrence, and fusion for genes in genomic
context.
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2.5.2 Protein–Protein

Interaction and Network-

Based Prediction

One goal of modern biology is to group proteins into functional
modules that act together to perform biological processes via direct
and indirect interactions. The types of protein interaction within
modules include physical interactions that generate protein com-
plexes and biochemical associations [16]. Network-based predic-
tions take advantage of these key features as gene products exhibit
the tendency to associate into macromolecular complexes, bio-
chemical pathways, and functional modules. Empirical observation
shows that about 70–80% of interacting protein pairs share at least
one function [24]. This observation is the rationale for methods to
predict protein function using a network of protein–protein inter-
action, where proteins with unknown function can be assigned to
the same function of known proteins interacting with them in a
network. Protein–protein interaction networks can be recon-
structed using proteomics, genomics, RNA expression (e.g., DNA
microarrays, SGE, and RNA-seq) protein–protein interaction
experiments (e.g., two-hybrid analysis, co-immunoprecipitation,
and mass spectrometry), and bioinformatics approaches, which
can reveal previously overlooked components and unanticipated
functional associations [16, 64, 65]. The function of an unknown
protein can be predicted based on its direct interactions, that is, its
direct connections with known function of members observed in
the network, or assisted by module, where first, groups of dense
connections are identified in the network (modules), and then each
module is separately annotated based on known functions of mod-
ule members [66]. This approach assigns a function to an unclassi-
fied protein on the basis of function(s) present among the classified
interacting proteins [24]. However, a disadvantage of this approach
lies in the fact that, generally, there are few interactions observed
between proteins with unknown and known functions [24].

The representation of protein–protein interactions as a network
has the advantage to increase confidence levels for individual inter-
actions and the possibility to uncover sets of protein–protein inter-
actions that unexpectedly link diverse cellular processes or that
indicate crosstalk between cellular compartments [65].

3 Final Remarks

As discussed in this chapter, the prediction of protein function is
directly or indirectly dependent on proteins experimentally charac-
terized, primary sequence and structure databases, and identifica-
tion of homologous from direct sequence or structure comparison
or extracted characteristics. Considering that experimentally char-
acterized proteins are much fewer than uncharacterized proteins,
and that the last continue to grow faster, automatic function pre-
diction is the only suitable way to assign function to these “new”
proteins. However, although much of these proteins with unknown
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function may present homologous proteins with known function, a
significant part represent orphan genes/proteins or are part of
orthologous groups of unknown proteins. Further, even for
unknown proteins that’s function can be determined automatically,
there are many reasons that makes this a complex task [3]: protein
function can be studied from its molecular role to its metabolic or
phenotypic effect in the whole cell; the experimental characteriza-
tion of a protein is performed at a particular condition of tempera-
ture, pH, ligands concentration, etc., frequently given just partial
description of its function; proteins are often multifunctional
(Molecular Function and Biological Process ontologies have 30%
and 60% of proteins in Swiss-Prot with more than one leaf term,
respectively); annotation errors may occur due to experiment inter-
pretation; and protein function is generally associated to gene
names, difficult to predict in diverse isoforms.

Comparison of the accuracy (percentage in brackets) in pre-
dicting molecular function for experimentally characterized pro-
teins, showed high variability in software using similarity-based
methods: BLAST (75%), GeneQuiz (64%), and Gotcha (89%);
and phylogeny-based methods: SIFTER (96%) and Orthostrapper
(11%) [67]. A globally miss rate over 50% was found comparing the
performance of Blast2GO, InterProScan, PANTHER, Pfam, and
ScanProsite [68]. These results suggest the need to combine differ-
ent methods when trying to predict protein functions. In a more
complete survey, the performance of 54 methods for protein func-
tion prediction was evaluated by Radivojac et al. [3]. The authors
established a cutoff of 60% amino acid sequence identity between
an unknown and an experimentally annotated protein to be consid-
ered easy to annotate and determined its function and also observed
that the overall accuracy in determining the Molecular Functional
category is higher on single-domain proteins, compared to multi-
domain proteins [3]. The value of, at least, 60% sequence identity,
and more likely closer to 80%, was also observed as required for the
accurate transfer of the third level of EC classification [4].

When performing function prediction analysis important con-
siderations should be taken into account, as outlined by Radivojac
et al. [3]: (a) overall, BLAST seems ineffective at predicting func-
tional terms in Biological Process ontology, possibly due to multi-
ple roles played by orthologs; (b) studies have shown that
correlation between sequence and function similarity is weak
when applied to pairs of proteins and that domain assignments
alone are not sufficient to resolve function; (c) for Molecular Func-
tion category, function prediction performance is accurate, but for
Biological Process, the performance is worst; (d) methods that
perform better integrate a variety of experimental evidence and
weight different data appropriately for ontology terms.

A number of bioinformatics tools are available for protein
function prediction and many of these tools were presented along
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the text using the different methods described in this chapter. Many
other useful tools are available and can be found listed and classified
in reviews such as Watson et al. [2], Hawkins and Kihara [31],
Friedberg [12], and Punta and Ofran ([8]—Supporting
information).
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